If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17^2+b^2=19^2
We move all terms to the left:
17^2+b^2-(19^2)=0
We add all the numbers together, and all the variables
b^2-72=0
a = 1; b = 0; c = -72;
Δ = b2-4ac
Δ = 02-4·1·(-72)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*1}=\frac{0-12\sqrt{2}}{2} =-\frac{12\sqrt{2}}{2} =-6\sqrt{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*1}=\frac{0+12\sqrt{2}}{2} =\frac{12\sqrt{2}}{2} =6\sqrt{2} $
| 108=x+(2x+25)+2x | | 7•(3+2)=7•n= | | 272=-5-4(8x-6) | | 3/5r-3=5/r | | -4n+17-16n+8=n-73 | | 14x+7=9x+3+44 | | (x+16)*0.7=x | | 4/9x+1/5x=3.45 | | -184=6(-6n-2)+8 | | 1.6=1.4/w/3 | | 3x-7=x+53 | | 2x+25-x=9+4x-5 | | 7h=-(2h+18) | | 8x-6x+180=8x+72 | | x/(16-x)=1.28571428571 | | -8x-59=-11x-10-4x | | 8(x+7)=128 | | -16t^2+33t=0 | | 8x+12=-15x-111 | | -10(2x-5)=3(-8+9x) | | 44x-26-3x=12+41x-38 | | 3/5x=11/5 | | -6x-9=-9x | | 3n+2n=40 | | 9x+24+2x*2=-2 | | 12.54+0.11(x+3)=13.04-0.12 | | 2x-96=-4x-6 | | 12.54+0.11(x+3)=13.04+0.12 | | .60=30x | | -6m+8=2 | | 65*x+2=90 | | 5(x-4)=130/13 |